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INTEGRAL TRANSFORMS SOLUTION FOR FLOW 

DEVELOPMENT IN WAVY WALL DUCTS 

 
 

Abstract 

 

Purpose - The present paper provides an analysis of two–dimensional laminar flow in the 

entrance region of wavy–wall ducts as obtained from the solution of the steady Navier–Stokes 

equations for incompressible flow. 

Design/methodology/approach - The study is undertaken by application of the Generalized 

Integral Transform Technique (GITT) in the solution of the steady Navier–Stokes equations 

for incompressible flow. The streamfunction–only formulation is adopted, and a general 

filtering solution that adapts to the irregular contour is proposed to enhance the convergence 

behavior of the eigenfunction expansion. 

Findings - A few representative cases are considered more closely in order to report some 

numerical results illustrating the eigenfunction expansions convergence behavior. The product 

friction factor–Reynolds number is also computed and compared against results from discrete 

methods available in the literature for different Reynolds numbers and amplitudes of the wavy 

channel. 

Research limitations/applications - The proposed methodology is fairly general in the 

analysis of different channel profiles, though the reported results are limited to the wavy 

channel configuration. Future work should also extend the analysis to geometries represented 

in the cylindrical coordinates with longitudinally variable radius. 

Practical implications - The error controlled converged results provide reliable benchmark 

results for the validation of numerical results from computational codes that address the 

solution of the Navier-Stokes equations in irregular geometries. 

Originality/value - Although the hybrid methodology is already known in the literature, the 

results here presented are original and further challenges application of the integral transform 

method in the solution of the Navier-Stokes equations. 

 

 

Keywords: Navier–Stokes equations, wavy–wall channels, integral transforms, friction 

factor, hybrid methods. 
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Nomenclature 

 

a
*
  amplitude of the wavy boundary 

b  half the distance between the walls at the duct inlet 

c   parameter of scale compression 

F(x,y)  filtering function 

k1, k2  streamfunction values at the duct walls 

n  unit normal vector 

Ni  norm 

NTV  expansion truncation order 

p  dimensionless pressure field 

Q  dimensionless mass flux 

Re  Reynolds number 

u  dimensionless longitudinal velocity component 

v  dimensionless transversal velocity component 

x  dimensionless longitudinal coordinate 

xout  value of the longitudinal coordinate at the duct outlet 

y  dimensionless transversal coordinate 

y1, y2  boundaries geometric profiles 

Yi  eigenfunctions 

Greek letters 

α  dimensionless duct amplitude 

βi  x–independent eigenvalues 

η  transformed longitudinal coordinate 

ξ  transformed transversal coordinate 

τ  compressed longitudinal coordinate 

φ  filtered potential 

iφ   transformed potentials 

ψ  streamfunction 

ω  vorticity 

Subscripts and superscripts 

_  integral transformed quantities 

i, j, k  expansions indices 
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1. Introduction 

 

Fluid flow within irregularly shaped ducts is found in several industrial applications 

related, for instance, to the flow of liquids in chemical processing plants, air flow in cooling, 

heating and ventilation units, and cooling of electronic equipment. In these applications there 

is the need of evaluating certain physical parameters for proper thermal–hydraulic design, 

such as friction factors and heat transfer coefficients. Channels with corrugated surfaces are, 

for example, employed in compact heat exchangers [1] for heat transfer enhancement. Most 

theoretical studies performed on the fluid dynamics and thermal phenomena occurring in 

corrugated wall ducts consider corrugations having a periodical pattern which are described 

by simple functions such as rectangular, triangular or sinusoidal relations. A few experimental 

and theoretical studies are available in the literature on the thermohydraulics of such wavy 

wall ducts [2–6]. Wall corrugation may also be employed aimed at promoting early transition 

of laminar to turbulent flows, sometimes responsible for the enhancement of heat transfer in 

practical applications [7-10]. More recently, a few works have addressed the interest in 

investigating channel corrugations at the micro-scale, either for liquid or gaseous flows [11-

13]. 

The numerical simulation of flows in irregularly shaped channels by the conventional 

discrete approaches requires sufficiently fine meshes and considerable computational effort so 

as to capture the detailed aspects of the fluid flow that influence the wall friction. On the other 

hand, a number of hybrid numerical–analytical approaches were progressively developed and 

presented in the open literature, advocated as less expensive and at least as companion tools 

for the more popular and, in general, more straightforward discrete numerical methods. 

Eigenfunction expansion–type approaches were among such extended analytical tools that to 

a considerable extent were also able to profit from the concurrent development of symbolic 

computation platforms [14]. Within this class of approaches, the Integral Transform Method 

was gradually expanded in its applicability, under the label of the Generalized Integral 

Transform Technique (GITT) [15–21], and extensively employed in heat/mass transfer and 

fluid flow problems. For instance, under either the boundary layer or full Navier–Stokes 

formulations, a number of contributions have advanced this method towards the error 

controlled solution of internal flow and convective heat transfer problems [22–37]. Both the 

primitive variables and streamfunction (or vector–scalar potentials for three–dimensional 

flows) formulations were adopted in such developments, with some preference to the 

streamfunction form, due to the elimination of the pressure field and automatic satisfaction of 

the continuity equation. In the case of the streamfunction–only formulation, the appropriate 

eigenfunction expansion for the velocity problem is in general proposed based on a fourth 

order eigenvalue problem related to the analytical solution of the linear biharmonic equation 

for vanishing Reynolds number. In the context of computational solutions with automatically 

controlled accuracy, the Generalized Integral Transform Technique (GITT) [14–21], with its 

automatic global error control capability, appears as a reliable path for obtaining benchmark 

results, allowing for a more definitive critical evaluation of previously published numerical 

results of classical test problems. The GITT has already been utilized to find hybrid 

analytical–numerical solutions for laminar flow development inside parallel–plates channels 

[23–26, 35], by using both the primitive variables and streamfunction–only formulations, in 

either the Navier–Stokes or boundary layer formulations. Extending such efforts, the present 

work is motivated by the application of the GITT in the solution of hydrodynamic developing 

flow in a wavy wall duct. Thus, a Navier–Stokes–based formulation for two–dimensional 

laminar incompressible flow in irregularly shaped channels is adopted, in terms of the 

streamfunction only such as that one originally proposed and solved by integral transforms in 

[34]. Here, the streamfunction is split up in two parts, where one of them represents a generic 
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filtering solution, which adapts to the irregular boundary of the duct. The aim of the filtering 

solution is to offer a convergence enhancement effect on the eigenfunction expansion for the 

streamfunction, by utilizing an analytical filter that changes along the flow development. A 

wavy wall duct is then more closely studied and computations for the streamfunction, 

vorticity and velocity fields are performed, as well as for the product of the friction factor–

Reynolds number, for different values of the governing parameters of the flow, such as the 

Reynolds number and the amplitude of the wavy surface, extending the scope and preliminary 

assessment of this problem as first presented in [38]. Finally, a set of reference results are 

systematically presented and employed to covalidate previously reported results [6] obtained 

by discrete numerical methods. 

 

2. Problem formulation and solution methodology 

 

We consider two–dimensional steady laminar flow of an incompressible Newtonian fluid 

in the inlet region of a duct of irregular geometry. Figure 1 shows the schematic 

representation of the considered internal flow problem, which is not required to be 

symmetrical with respect to the longitudinal axis in the proposed approach and associated 

algorithm. The flow is governed by the continuity and Navier–Stokes equations, and the 

following dimensionless variables are here employed:  
 

 

* * * * * *
1 1 2 2

2
0 0 0 0

x x / b; y y / b; y (x) y (x ) / b; y (x) y (x ) / b; 

u = u * /u ; v = v* /u ; p = p* / u ; Re bu /

= = = =

ρ = ν
 (1a–h) 

 

 

where b represents half the distance between the walls at the duct inlet. 

Adopting the streamfunction–only formulation [34], the problem is then written in 

dimensionless form as: 
 

 1 2L [ , ] L [ ]ψ ψ = ψ  (2a) 
 

the operators L1[f, g] and L2[f] are defined as 
 

 [ ]
3 3 3 3

1 3 2 2 3

f g g f g g
L f ,g

y xx x y x y y

   ∂ ∂ ∂ ∂ ∂ ∂
= + − +   
∂ ∂∂ ∂ ∂ ∂ ∂ ∂   

 (2b) 

 [ ]
4 4 4

2 4 2 2 4

1 f f f
L f 2

Re x x y y

 ∂ ∂ ∂
= + + 

∂ ∂ ∂ ∂ 
 (2c) 

 

and the boundary conditions are associated with no–slip and impermeability at the duct walls. 
 

 1
1 1

(x, y (x))
(x, y (x)) k ;    0

∂ψ −
ψ − = =

∂n
 (3a,b) 

 2
2 2

(x, y (x))
(x, y (x)) k ;    0

∂ψ
ψ = =

∂n
 (4a,b) 

 

where n, k1 and k2 represent, respectively, the unit normal vector in the outward direction of 

the duct wall and the streamfunction values at the walls. The constant Q represents the 

volumetric flow rate per unit of length and is determined as [34]: 
 

 2 2 1(0, y ) k Q kψ = = +  (5) 
 

In the above equations the definition of streamfunction was employed according to: 
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(x, y)

u(x,y) = 
y

∂ψ
∂

,   
(x, y)

v(x,y) =
x

∂ψ
−

∂
 (6a,b) 

 

These definitions allow automatic satisfaction of the continuity equation and eliminate the 

pressure field from the problem formulation, Eq. (2a).  

In the solution of Eq. (2a) by using the GITT approach, it is convenient to define a filter in 

order to homogenize the boundary conditions in the y direction, which later will be the 

coordinate chosen for construction of the eigenvalue problem. Therefore, the general filtering 

function is defined from: 
 

 (x, y) = (x, y) F(x, y)ψ φ +  (7) 
 

where φ(x,y) represents the unknown potential to be determined, and F(x,y) is the filter, which 

at this point is only required to have the same values of ψ(x,y) at the duct walls. The function 

F(x,y) is thus not necessarily a particular solution of ψ(x,y). Therefore, introducing Eq. (7) 

into Eq. (2a), results 
 

 1 1 1 1 2 2L [ , ] L [ , F] L [F, ] L [F, F] L [ ] L [F]φ φ + φ + φ + = φ +  (8) 
 

with the filtered boundary conditions 
 

 1 1 1(x, y ) k F(x, y )φ − = − − ;   1(x, y )
=0

∂φ −
∂n

 (9a,b) 

 2 2 2(x, y ) k F(x, y )φ = − ;   2(x,y )
=0

∂φ
∂n

 (10a,b) 

 

The filtering function can be built, for instance, by constructing at any cross–section along 

the duct a fully developed velocity profile, which follows the irregularity of the duct. In order 

to more easily obtain this filter, a relationship between the original coordinates system (y,x) 

and a new transformed system (η,x) is given as: 
 

 3y y (x)η= − ;   [ ]0 1 2

1
y (x) y (x) y (x)

2
= + ;   [ ]3 2 1

1
y (x) y (x) y (x)

2
= −  (11a–c) 

 

or in terms of the original coordinates 
 

 

3

3 3
1

0 0

y y y y3 1 Q
F(x, y) Q k

4 y 3 y 2

    − −
 = − + +   
     

 (12) 

 

where y3 represents the distance between the axes y and η, while y belongs to the interval  

[–y1(x),y2(x)] and η∈[–y0(x), y0(x)]. On the other hand, a fixed domain permits a more 
straightforward visualization of both this filtering solution and the eigenvalue problem to be 

proposed, in terms of a new transversal coordinate, ξ. Therefore the domain ξ∈[–1,1] is 

defined from: 
 

 3

0 0

y y

y y

−η
ξ = =  (13) 

 

Thus, the filter can be rewritten in the form 
 

 
3

1

3 Q
F( ) k

4 3 2

 ξ
ξ = ξ − + + 

 
 (14) 
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Now, in light of the homogeneous characteristics of the boundary conditions in the 

transversal direction, it is more appropriate to choose this coordinate for proposing the 

eigenfunction expansion, to be employed in the process of integral transformation. By 

considering the relation given by Eq. (13), the auxiliary fourth order eigenvalue problem is 

taken as: 
 

 
4

4 4i
i 0 i i i4

d Y ( )
=( y ) Y ( ) Y ( )   

d

ξ
µ ξ ≡ β ξ

ξ
 (15a) 

 i
i

dY ( 1)
Y ( 1)=0;     =0;

d

−
−

ξ
   i

i

dY (1)
Y (1)=0;     =0

dξ
 (15b–e) 

 

Problem (15) is analytically solved, to furnish 
 

 

i i

i i

i

i i

i i

cos( ) cosh( )
  ,     i=1,3,5,...

cos( ) cosh( )
Y ( )=       

sin( ) sinh( )
  ,       i=2,4,6,...

sin( ) sinh( )

β ξ β ξ − β β
ξ 

β ξ β ξ −
 β β

 (16) 

 

where the x–independent eigenvalue βi is defined as, i i 0(x)y (x)β =µ , and computed from the 

transcendental equations below 
 

 
i

i

i

tan( ),       i=1,3,5,...
tanh( )=       

  tan( ),       i=2,4,6,...

− β
β 

β
 (17) 

 

Also, the eigenfunctions satisfy the following orthogonality property: 
 

 
2

1

y

i j
y i 0

0,                    for i j
Y Y dy

N (x) 2y (x), for i j−

≠
= 

= =∫  (18a,b) 

 

where Ni(x) is the normalization integral and the index i in Eq.(18.b) can thus be dropped. 

The eigenvalue problem defined by Eqs.(15) allows for the definition of the following 

integral transform pair: 
 

 
2

1

y

i i
y

1
(x) Y (x, y) (x, y)dy

N(x) −
φ = φ∫ ,   transform (19) 

 i i

i 1

(x, y) Y (x, y) (x)

∞

=

φ = φ∑ ,   inverse (20) 

 

We can now accomplish the integral transformation of the original partial differential 

system given by Eqs. (8)–(10). For this purpose, Eq. (8) is multiplied by Yi and is then 

integrated over the domain [–y1(x),y2(x)] in y. After that, the inverse formula given by Eq. 

(20) is employed, resulting after some manipulations in the following coupled ordinary 

differential system for the calculation of the transformed potentials iφ : 
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 (iv) 4 ' '' '''i
i i i ijk j k ijk j k ijk j k ijk j k

j 1 k 1

L Re
A B C D

N N

∞ ∞

= =


φ = −µ φ + + φ φ + φ φ + φ φ + φ φ


∑∑   

 
' ' ' ' '' ' '' '''

ijk j k ijk j k ijk j k ij j ij j ij j ij j

j 1

1
E F G H I J K

N

∞

=

  
+ φ φ + φ φ + φ φ + φ + φ + φ + φ  

  
∑  (21) 

 

The outflow boundary conditions are here chosen from two possibilities. In the first one, 

the duct is considered to be finite (truncated duct), and the following boundary conditions are 

employed: 
 

 out
out

(x , y)
v(x , y) 0;    0

x

∂ω
= =

∂
 (22a,b) 

 

where ω is the vorticity. 

The second possibility considers that the duct is infinite. Therefore, when x→∞, the 
outflow boundary conditions are those of a fully developed flow in a parallel-plates channel, 

which are given by: 
 

 23
u( , y) (1 y );    v( , y) 0  

2
∞ = − ∞ =  (23a,b) 

 

The boundary conditions given by Eqs. (22) and (23), after introducing the definition of 

the streamfunction, Eqs. (6), and the general filtering function given by Eq. (7), are rewritten 

as: 
 

– For a truncated duct 
 

 out out(x , y) F(x , y)
0

x x

∂φ ∂
+ =

∂ ∂
 (24a) 

 
3 3 3 3

out out out out

3 2 3 2

(x , y) (x , y) F(x , y) F(x , y)
0

x x y x x y

∂ φ ∂ φ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂ ∂
 (24b) 

 

– For an infinite duct 
 

 ( , y) 0φ ∞ =  (25a) 

 
( , y)

0
x

∂φ ∞
=

∂
 (25b) 

 

 Now, the integral transformation process of Eqs. (24) and (25) is similar to that of 

obtaining Eq. (21), i.e., the equations are multiplied by Yi and then integrated over the domain  

[–y1(x),y2(x)] in y. After that, the inverse formula given by Eq. (20) is employed, yielding: 
 

 

 

 

 

– For a truncated duct 
 

 i
i

d (0)
(0) 0;    0

dx

φ
φ = =  (26a,b) 
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 i out
i ij j out

out j 1

d (x ) 1
M N (x )

dx N(x )

∞

=

 φ  = − + φ
  

∑  (26c) 

 

23
j out j outi out

i ij j out ij ij3 2
out j 1

d (x ) d (x )d (x ) 1
O P (x ) Q R

N(x ) dxdx dx

∞

=

  φ φφ  
= − + φ + +  

    
∑  (26d) 

 

– For an infinite duct 
 

 i
i

d (0)
(0) 0;   0;

dx

φ
φ = =    i

i

d ( )
( ) 0;    0

dx

φ ∞
φ ∞ = =  (27a–d) 

 

The coefficients that depend on x are calculated from: 
 

 
2

1

3 3 3 3y
j jk k k k

ijk i 3 2 2 3
y

Y YY Y Y Y
A Y dy

y xx x y x y y−

 ∂ ∂   ∂ ∂ ∂ ∂
= + − +    

∂ ∂∂ ∂ ∂ ∂ ∂ ∂     
∫  (28a) 

 
2

1

2 2 2y
j jk k k

ijk i 2 2
y

Y YY Y Y
B Y 3 2 dy

y x x yx y−

 ∂ ∂ ∂ ∂ ∂
= + −  

∂ ∂ ∂ ∂∂ ∂   
∫  (28b) 

 
2

1

y
j jk k

ijk i
y

Y YY Y
C Y 3 dy

y x x y−

∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∫  (28c) 

 
2

1

y
j

ijk i k
y

Y
D Y Y dy

y−

∂
=

∂∫ ;   
2

1

3 3y
k k

ijk i j 2 3
y

Y Y
E Y Y dy

x y y−

 ∂ ∂
= − + 

∂ ∂ ∂ ∫  (28d,e) 

 
2

1

2y
k

ijk i j
y

Y
F 2 Y Y dy

x y−

∂
= −

∂ ∂∫ ;   
2

1

y
k

ijk i j
y

Y
G Y Y dy

y−

∂
= −

∂∫  (28f,g) 

 ij ij ijH a Re b= − ;  ij ij ijI c Re d= − ;  ij ij ijJ e Re f= − ;  ij ij ijK g Re h= − ;  i i iL i Re j= −  (28h–l) 

 
2

1

y

i i
y

F
M Y dy

x−

∂
=

∂∫ ;   
2

1

y
j

ij i
y

Y
N Y dy

x−

∂
=

∂∫  (28m,n) 

 
2

1

3 3y

i i 3 2
y

F F
O Y dy

x x y−

 ∂ ∂
= + 

∂ ∂ ∂ ∫ ;   
2

1

3 3y
j j

ij i 3 2
y

Y Y
P Y dy

x x y−

 ∂ ∂
= + 

∂ ∂ ∂  
∫  (24o,p) 

 
2

1

2 2y
j j

ij i 2 2
y

Y Y
Q Y 3 dy

x y−

 ∂ ∂
= + 

∂ ∂  
∫ ;   dy

x

Y
Y3R

jy

y
iij

2

1 ∂

∂
= ∫−  (28q,r) 

 

2

1

3 3 3 3y
j j

ij i 3 2 2 3
y

3 3 3 3
j j j j

3 2 2 3

Y YF F F F
a Y

y xx x y x y y

Y Y Y YF F
                  dy

y xx x y x y y

−

∂ ∂   ∂ ∂ ∂ ∂
= + − +    

∂ ∂∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂ ∂ ∂∂ ∂
+ + − +   

   ∂ ∂∂ ∂ ∂ ∂ ∂ ∂     

∫
;    (29a) 

 
2

1

4 4y
j j

ij i 4 2 2
y

Y Y
b Y 2 dy

x x y−

 ∂ ∂
= + 

∂ ∂ ∂  
∫  (29b) 

 
2

1

2 2 23 3y
j j j

ij i j 2 3 2 2
y

Y Y YF F F F
c Y Y 3 2 dy

y x y xx y y x y−

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
 = − − + + −     ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂     

∫  (29c) 



 8 

 
2

1

3 3y
j j

ij i 3 2
y

Y Y
d 4 Y dy

x x y−

 ∂ ∂
= + 

∂ ∂ ∂  
∫ ;   

2

1

y
j j

ij i
y

Y YF F
e Y 3 dy

x y y x−

∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∫  (29d,e) 

 
2

1

2 2y
j j

ij i 2 2
y

Y Y
f 2 Y 3 dy

x y−

 ∂ ∂
= + 

∂ ∂  
∫ ;   dy

y

F
YYg j

y

y
iij

2

1 ∂
∂

= ∫− ;   dy
x

Y
Y4h

jy

y
iij

2

1 ∂

∂
= ∫−    (29f-h) 

2

1

3 3 3 3y

i i 3 2 2 3
y

F F F F F F F F
i Y dy

y y x xx x y x y y−

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + − − 

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∫ ; 
2

1

4 4y

i i 4 2 2
y

F F
j Y 2 dy

x x y−

 ∂ ∂
= + 

∂ ∂ ∂ ∫  (29i,j) 

 

For computational purposes, it is necessary to truncate the infinite expansions in a 

sufficiently large number of terms so as to achieve the user prescribed relative error target for 

obtaining the original potentials, in this case the streamfunction values, where NTV is here 

the order of truncation of the infinite series. Also, in order to solve the transformed ODE 

system, efficient numerical algorithms for boundary value problems are to be employed, such 

as the subroutine DBVPFD from the IMSL Library [39], which offers an automatic adaptive 

scheme for local error control of the numerical results for the transformed potentials. It is then 

necessary to rewrite the transformed ODE system as a first order one, by introducing the 

following dependent variables: 
 

 i i= φχ ;   i i
NTV i

d d

dx dx
+

φ
= =

χ χ ;   
2

NTV i i
2NTV i 2

d d

dx dx

+
+

φ
= =

χ χ ;  

 
3

2NTV i i
3NTV i 3

d d

dx dx

+
+

φ
= =

χ χ ;   
4

3NTV i i

4

d d

dx dx

+ φ
=

χ
 (30a–e) 

 

Therefore, by making use of Eqs. (30), the transformed system can be rewritten as: 
 

 NTV iid

dd

dx

+=
ττ  

 
 

χχ
;   NTV i 2NTV id

dd

dx

+ +=
ττ  

 
 

χ χ
;   2NTV i 3NTV id

dd

dx

+ +=
ττ  

 
 

χ χ
 (31a–c) 

NTV NTV

43NTV i i
i i ijk j k ijk j NTV k

j 1 k 1

d L Re
A B

d N N

+
+

= =

 = −µ + + + τ 

χ χ χ χ χ χ∑∑  

 ]ijk j 2NTV k ijk j 3NTV k ijk NTV j k ijk NTV j NTV k ijk NTV j 2NTV kC D E F G+ + + + + + ++ + + + +χ χ χ χ χ χ χ χ χ χ   

]
NTV

ij j ij NTV j ij 2NTV j ij 3NTV j

j 1

1
H I J K ,  for  i 1, 2,..., NTV

dN

dx

+ + +

=


+ + + + = τ     

χ χ χ χ∑  (31d) 

 

with τ=1–e
–cx

, 0≤τ≤1, and c being a parameter of scale compression for the case of an infinite 
duct. 

 

Analyzing the ODE system given by Eqs. (31) we observe that the integral coefficients 

depend on the axial position x. This would imply in a high computational cost if the 

coefficients would require error controlled numerical integrations, once they need to be 

continuously reevaluated along the solution procedure for the ordinary differential equations 

system. However, all of them could be analytically determined through symbolic computation 

[14]. Also, the computational procedure is organized in such a way that the x–independent 

portions of each coefficient are calculated only once, before entering the boundary value 

problem solver, and stored. Along the ODE system integration, they are then recalled and 
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multiplied by the functions that take into account the dependence of the irregular domain as 

the differential system is being numerically solved. 

 

3. Results and discussion 

 

We analyze the wavy wall duct whose geometry was considered in ref. [6] and is shown 

schematically in Fig. 2 below. The functions that describe this symmetric geometry in 

dimensionless terms are given as 
 

 1y (x) 1 f (x);= +    2y (x) 1 f (x);= +    [ ]f (x) sin (x 3)= α π −  (32a–c) 
 

where α=a
*
/b is the dimensionless amplitude of the wavy surface, and the value of the axial 

coordinate at the duct outlet  xout was taken as xout=20. In the present analysis, the interval 

used for the axial coordinate x was 3≤x≤15, which corresponds to six complete sinusoidal 
waves. 

Tables 1 to 3 show the convergence of the streamfunction values along the line y=0.5 for 

Re=100 and α=0.3, Re=300 and α=0.2, and Re=500 and α=0.1, respectively, for the two 

cases of outflow boundary conditions (here named truncated duct and infinite duct, 

respectively). For the case of Re=100 and α=0.3, it is observed that full convergence to four 

significant digits is achieved with NTV=18, while for the case Re=500 and α=0.1, similar 

convergence is reached only with NTV=22. In Table 2, the results obtained with NTV=22 and 

26 have remained unaffected, and the same happens in Table 3, though this is not evident 

from the previous column for NTV=18. The algorithm is organized so that numerical 

computation automatically ceases once the requested precision is achieved. In general, the 

results for the two cases of outflow boundary conditions analyzed are in perfect agreement, 

with a slight difference for axial positions near the duct outlet (x=20), which in terms of 

relative deviation is always below 0.5% for the fully converged results (NTV=22). This is 

justified by the fact that for the infinite duct, the fully developed region is not imposed and is 

reached at axial positions a little further away. 

Figures 3(a)–(d) show a comparison of the present results for the product fRe with those 

numerically obtained by Wang and Chen [6] at different axial positions along the channel, for 

the cases Re=100 and α=0.2, Re=300 and α=0.2, Re=500 and α=0.1 and Re=500 and α=0.2, 
respectively. Wang and Chen [6] employed a coordinate transformation and the spline 

alternating–direction implicit method, an improved version of the cubic spline collocation 

method. One can see an excellent agreement among the four sets of results, obtained via two 

quite different solution methodologies, offering a fairly reliable covalidation report. Also, it 

can be verified how importantly the Reynolds number influences the product fRe, i.e., higher 

peaks are found for increasing Reynolds numbers and fixed duct geometry, indicating the 

evidently expected higher viscous effects in the flow. In both cases, the GITT results for the 

product fRe are already converged to the graph scale. In tabular form, a convergence rate of at 

least two significant digits for fRe is observed in most cases. The computation of the friction 

factor involves derivatives of the velocity field, which present a slower convergence behavior 

than the original expanded potentials. Also, one can notice negative values for the product fRe 

in some positions, which indicate the presence of recirculation zones. In addition, Fig. 4 

shows the convergence behavior of the product fRe for the most severe case of Re=500 and 

α=0.3, with different truncations orders NTV=13, 15, 17 and 19, in order to demonstrate the 
graphical convergence behavior of such results. This case brings a combination of the highest 

Reynolds number and duct amplitude considered in the present work; nevertheless, an 

excellent graphical convergence of fRe is also verified for this situation. Figures 5(a)–(c) 

show the product fRe for different values of the Reynolds number, respectively, Re=100, 300 
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and 500, and varying the dimensionless duct amplitude for each set of curves, so as to 

illustrate the effect of the duct geometry. Clearly, the fRe peaks are markedly affected by the 

increase in the amplitude of the sinusoidal oscillation on the boundary geometry, with the 

growing recirculation flow patterns, as will be more evident from the contour plots for the 

streamfunction in what follows. 

As for the product fRe, Figure 6 shows the convergence behavior for the evolution of the 

axial component velocity at the duct centerline, u(x,0), for the more severe case of Re=500 

and α=0.3, and again a reasonable graphical convergence rate is achieved for this parameter. 

Then, Figs. 7(a)–(c) illustrate the evolution of the axial component velocity at the duct 

centerline for different values of the dimensionless duct amplitude in each set of curves for 

Re=100, 300 and 500, respectively. As the Reynolds number and the duct amplitude increase, 

it is observed higher distortions in the longitudinal velocity component evolutions, 

demonstrating the increased perturbation on the core flow around the channel centerline. With 

the increase on the channel walls sinusoidal amplitude, the flow is noticeably accelerated in 

average terms along the centerline within this development region, as a direct result of the 

effective flow path periodic constriction. 

Finally, Figures 8(a)–(c) to 10(a)–(c) show the isolines patterns of the streamfunction for 

all three values of Reynolds numbers and duct wall sinusoidal amplitudes here considered. 

The marked influence of the combined increase on Reynolds number and channel amplitude 

is clearly observable in the appearance of stronger recirculation zones internally to the 

“cavities” formed by the wavy walls. Specifically, the case of Re=500 and α=0.3 shows the 

strongest recirculation zone, even at the duct outlet, demonstrating the influence pointed out 

above. 

 

4. Conclusions 

 

The Generalized Integral Transform Technique (GITT) has been demonstrated in the 

hybrid numerical–analytical solution of laminar flow problems within channels with wavy 

walls. The case of a wavy–walls duct has been more closely considered in light of its 

importance in heat transfer enhancement applications. A steady two–dimensional formulation 

based on the Navier–Stokes equations and on the streamfunction definition is adopted. 

Employing a simple coordinate transformation, a straightforward filtering solution is then 

obtained, offering a relevant convergence enhancement effect in the eigenfunction expansion 

for the streamfuntion. 

The convergence behavior of the proposed eigenfunction expansion is illustrated, and 
numerical results for the friction factor are critically compared with previously obtained 

numerical results from discrete approaches, with good agreement. A few additional results are 

also presented and employed in the interpretation of some physical aspects in this flow 

problem. 

The proposed hybrid approach is fairly general and opens up several possibilities of 

analysis, including the search of optimized heat transfer surfaces forms under prescribed 

pressure drop requirements. Since the hybrid solution is fully analytical in the transversal 

direction, integrals and derivatives at any cross–section can be readily derived without further 

numerical involvement. The approach can also be quite interesting in the analysis of periodic 

fully developed situations. 
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Figure Captions: 

 

Figure 1. Definition of the general irregular geometry for the problem and coordinates system. 

Figure 2. Geometric and flow characteristics of the wavy wall duct analyzed. 

Figure 3. Comparison of GITT results for the product fRe for different values of the Reynolds 

number and dimensionless duct amplitude, against numerical results of spline alternating–

direction implicit method of Wang and Chen [6]: (a) Re=100 and α=0.2; (b) Re=300 and 

α=0.2; (c) Re=500 and α=0.1; (d) Re=500 and α=0.2. 

Figure 4. Convergence behavior of the distribution of the product fRe for Re=500 and α=0.3. 

Figure 5. Profiles of the product fRe for different values of the Reynolds number and 

dimensionless duct amplitude: (a) Re=100; (b) Re=300; (c) Re=500. 

Figure 6. Convergence behavior of the evolution of the axial component velocity at the duct 

centerline for Re=500 and α=0.3. 

Figure 7. Evolution of the axial component velocity at the duct centerline for different values 

of the Reynolds number and dimensionless duct amplitude: (a) Re=100; (b) Re=300;  

(c) Re=500. 

Figure 8. Streamline patterns along the duct length for different dimensionless duct amplitude 

and Re=100: (a) α=0.1; (b) α=0.2; (c) α=0.3. 

Figure 9. Streamline patterns along the duct length for different dimensionless duct amplitude 

and Re=300: (a) α=0.1; (b) α=0.2; (c) α=0.3. 

Figure 10. Streamline patterns along the duct length for different dimensionless duct 

amplitude and Re=500: (a) α=0.1; (b) α=0.2; (c) α=0.3. 
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Table 1 

Convergence behavior of the streamfunction at y=0.5 for Re=100 and α=0.3 
Infinite Duct Truncated Duct 

NTV NTV x 
6 10 14 18 22 6 10 14 18 22 

0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

3 0.7494 0.7499 0.7499 0.7499 0.7499 0.7492 0.7498 0.7499 0.7499 0.7499 

3.5 0.6655 0.6657 0.6659 0.6659 0.6659 0.6655 0.6657 0.6659 0.6659 0.6659 

4 0.6922 0.6919 0.6920 0.6921 0.6921 0.6922 0.6919 0.6920 0.6920 0.6920 

4.5 0.7893 0.7929 0.7943 0.7945 0.7945 0.7893 0.7929 0.7943 0.7945 0.7945 

5 0.7897 0.8069 0.8095 0.8098 0.8098 0.7897 0.8069 0.8095 0.8097 0.8097 

5.5 0.7747 0.7928 0.7955 0.7958 0.7958 0.7747 0.7928 0.7955 0.7958 0.7958 

6 0.7759 0.7876 0.7896 0.7898 0.7898 0.7759 0.7876 0.7896 0.7898 0.7898 

6.5 0.8208 0.8246 0.8261 0.8262 0.8262 0.8208 0.8246 0.8262 0.8262 0.8262 

7 0.8109 0.8215 0.8232 0.8234 0.8234 0.8108 0.8215 0.8232 0.8234 0.8234 

7.5 0.7944 0.8053 0.8071 0.8073 0.8073 0.7944 0.8053 0.8071 0.8073 0.8073 

8 0.7924 0.7993 0.8008 0.8009 0.8009 0.7923 0.7993 0.8008 0.8009 0.8009 

8.5 0.8299 0.8327 0.8340 0.8341 0.8341 0.8299 0.8327 0.8341 0.8341 0.8341 

9 0.8190 0.8287 0.8302 0.8304 0.8304 0.8190 0.8287 0.8302 0.8304 0.8304 

9.5 0.8287 0.8129 0.8145 0.8146 0.8146 0.8029 0.8129 0.8145 0.8146 0.8146 

10 0.7998 0.8064 0.8076 0.8077 0.8077 0.7998 0.8063 0.8076 0.8077 0.8077 

10.5 0.8347 0.8373 0.8385 0.8386 0.8386 0.8347 0.8373 0.8385 0.8386 0.8386 

11 0.8235 0.8327 0.8341 0.8342 0.8342 0.8235 0.8327 0.8341 0.8342 0.8342 

11.5 0.8076 0.8171 0.8186 0.8187 0.8187 0.8076 0.8171 0.8186 0.8187 0.8187 

12 0.8041 0.8103 0.8115 0.8116 0.8116 0.8041 0.8103 0.8115 0.8116 0.8116 

12.5 0.8374 0.8399 0.8411 0.8411 0.8411 0.8374 0.8399 0.8411 0.8411 0.8411 

13 0.8261 0.8351 0.8364 0.8365 0.8365 0.8261 0.8351 0.8364 0.8365 0.8365 

13.5 0.8103 0.8194 0.8208 0.8209 0.8209 0.8103 0.8194 0.8208 0.8209 0.8209 

14 0.8057 0.8116 0.8128 0.8129 0.8129 0.8057 0.8116 0.8128 0.8128 0.8128 

14.5 0.8328 0.8350 0.8362 0.8362 0.8362 0.8328 0.8349 0.8362 0.8362 0.8362 

15 0.7733 0.7807 0.7819 0.7821 0.7821 0.7733 0.7807 0.7819 0.7821 0.7821 

20 0.7448 0.7472 0.7476 0.7477 0.7477 0.7483 0.7508 0.7513 0.7514 0.7514 
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Table 2 

Convergence behavior of the streamfunction at y=0.5 for Re=300 and α=0.2 
Infinite Duct Truncated Duct 

NTV NTV x 
10 14 18 22 26 10 14 18 22 26 

0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

3 0.7346 0.7347 0.7347 0.7347 0.7347 0.7346 0.7347 0.7347 0.7347 0.7347 

3.5 0.6784 0.6785 0.6785 0.6785 0.6785 0.6784 0.6785 0.6785 0.6785 0.6785 

4 0.6840 0.6839 0.6840 0.6840 0.6840 0.6839 0.6839 0.6840 0.6840 0.6840 

4.5 0.7186 0.7191 0.7203 0.7207 0.7207 0.7186 0.7191 0.7203 0.7206 0.7207 

5 0.7186 0.7262 0.7291 0.7299 0.7299 0.7186 0.7262 0.7291 0.7299 0.7299 

5.5 0.7140 0.7228 0.7259 0.7267 0.7267 0.7140 0.7229 0.7259 0.7267 0.7268 

6 0.7180 0.7242 0.7264 0.7270 0.7270 0.7180 0.7242 0.7264 0.7270 0.7270 

6.5 0.7373 0.7399 0.7414 0.7419 0.7419 0.7373 0.7398 0.7414 0.7419 0.7419 

7 0.7348 0.7405 0.7429 0.7434 0.7434 0.7348 0.7406 0.7423 0.7434 0.7434 

7.5 0.7295 0.7358 0.7379 0.7385 0.7385 0.7295 0.7358 0.7379 0.7385 0.7385 

8 0.7312 0.7358 0.7374 0.7379 0.7379 0.7312 0.7358 0.7374 0.7378 0.7378 

8.5 0.7466 0.7489 0.7503 0.7507 0.7507 0.7466 0.7490 0.7503 0.7507 0.7507 

9 0.7435 0.7488 0.7509 0.7514 0.7514 0.7435 0.7489 0.7509 0.7514 0.7514 

9.5 0.7381 0.7439 0.7459 0.7463 0.7463 0.7381 0.7439 0.7458 0.7463 0.7463 

10 0.7389 0.7432 0.7447 0.7451 0.7451 0.7389 0.7432 0.7447 0.7451 0.7451 

10.5 0.7527 0.7550 0.7563 0.7567 0.7567 0.7527 0.7550 0.7563 0.7567 0.7567 

11 0.7493 0.7545 0.7564 0.7568 0.7568 0.7493 0.7545 0.7564 0.7568 0.7568 

11.5 0.7438 0.7494 0.7512 0.7516 0.7516 0.7439 0.7494 0.7512 0.7516 0.7516 

12 0.7442 0.7484 0.7498 0.7502 0.7502 0.7442 0.7484 0.7498 0.7502 0.7502 

12.5 0.7570 0.7593 0.7605 0.7609 0.7609 0.7570 0.7593 0.7605 0.7609 0.7609 

13 0.7535 0.7584 0.7603 0.7607 0.7607 0.7535 0.7585 0.7601 0.7606 0.7607 

13.5 0.7476 0.7529 0.7547 0.7551 0.7551 0.7476 0.7529 0.7547 0.7551 0.7551 

14 0.7463 0.7505 0.7517 0.7520 0.7520 0.7463 0.7502 0.7517 0.7520 0.7520 

14.5 0.7515 0.7535 0.7547 0.7551 0.7551 0.7515 0.7535 0.7547 0.7551 0.7551 

15 0.7071 0.7129 0.7147 0.7150 0.7150 0.7079 0.7129 0.7147 0.7151 0.7151 

20 0.7332 0.7356 0.7364 0.7366 0.7366 0.7350 0.7375 0.7383 0.7385 0.7385 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

Table 3 

Convergence behavior of the streamfunction at y=0.5 for Re=500 and α=0.1 
Infinite Duct Truncated Duct 

NTV NTV x 
6 10 14 18 22 6 10 14 18 22 

0 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 

3 0.7128 0.7138 0.7140 0.7141 0.7141 0.7128 0.7138 0.7140 0.7141 0.7141 

3.5 0.6850 0.6861 0.6862 0.6862 0.6862 0.6850 0.6861 0.6863 0.6862 0.6862 

4 0.6856 0.6853 0.6851 0.6851 0.6851 0.6855 0.6852 0.6851 0.6851 0.6851 

4.5 0.6928 0.6939 0.6938 0.6945 0.6945 0.6928 0.6940 0.6938 0.6945 0.6945 

5 0.6883 0.6914 0.6943 0.6955 0.6958 0.6883 0.6914 0.6943 0.6955 0.6958 

5.5 0.6829 0.6879 0.6913 0.6925 0.6927 0.6829 0.6880 0.6913 0.6925 0.6927 

6 0.6882 0.6908 0.6929 0.6937 0.6939 0.6882 0.6908 0.6929 0.6937 0.6939 

6.5 0.6959 0.6986 0.6994 0.7004 0.7005 0.6959 0.6986 0.6994 0.7004 0.7005 

7 0.6918 0.6961 0.6992 0.7003 0.7006 0.6918 0.6961 0.6992 0.7003 0.7006 

7.5 0.6866 0.6926 0.6959 0.6970 0.6972 0.6866 0.6926 0.6959 0.6970 0.6972 

8 0.6914 0.6948 0.6970 0.6978 0.6979 0.6914 0.6948 0.6970 0.6978 0.6979 

8.5 0.6985 0.7017 0.7027 0.7037 0.7038 0.6985 0.7017 0.7027 0.7037 0.7038 

9 0.6944 0.6990 0.7021 0.7033 0.7036 0.6944 0.6990 0.7021 0.7033 0.7036 

9.5 0.6894 0.6955 0.6988 0.7000 0.7002 0.6894 0.6955 0.6988 0.7000 0.7002 

10 0.6937 0.6974 0.6997 0.7005 0.7007 0.6937 0.6974 0.6997 0.7005 0.7007 

10.5 0.7005 0.7039 0.7050 0.7060 0.7062 0.7005 0.7039 0.7050 0.7060 0.7062 

11 0.6964 0.7012 0.7044 0.7055 0.7058 0.6964 0.7012 0.7044 0.7055 0.7058 

11.5 0.6914 0.6977 0.7010 0.7022 0.7024 0.6914 0.6977 0.7010 0.7022 0.7024 

12 0.6955 0.6994 0.7017 0.7026 0.7028 0.6955 0.6994 0.7017 0.7026 0.7028 

12.5 0.7019 0.7056 0.7068 0.7079 0.7080 0.7019 0.7056 0.7068 0.7079 0.7080 

13 0.6979 0.7027 0.7060 0.7072 0.7075 0.6979 0.7027 0.7060 0.7072 0.7075 

13.5 0.6927 0.6990 0.7024 0.7037 0.7038 0.6927 0.6990 0.7024 0.7037 0.7038 

14 0.6958 0.6996 0.7019 0.7029 0.7029 0.6958 0.6996 0.7019 0.7029 0.7029 

14.5 0.6978 0.7009 0.7019 0.7030 0.7031 0.6978 0.7009 0.7019 0.7030 0.7031 

15 0.6736 0.6768 0.6795 0.6805 0.6808 0.6736 0.6768 0.6795 0.6805 0.6808 

20 0.6977 0.6990 0.6999 0.7004 0.7004 0.6981 0.6994 0.7003 0.7008 0.7009 
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